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Figure 1: Comparing our pySpatial with spatial mental models for multi-view spatial reason-
ing tasks. Unlike spatial mental models (Yin et al., 2025), which rely on the implicit imagination of
MLLMs to construct a 2D cognitive map, we introduce pySpatial, a visual programming frame-
work that flexibly composes spatial tools (e.g., 3D reconstruction, camera movements, and novel
view synthesis) to enable MLLM:s to explicitly reason in 3D space for diverse spatial reasoning tasks.

ABSTRACT

Multi-modal Large Language Models (MLLMs) have demonstrated strong capa-
bilities in general-purpose perception and reasoning, but they still struggle with
tasks that require spatial understanding of the 3D world. To address this, we in-
troduce pySpatial, a visual programming framework that equips MLLMs with
the ability to interface with spatial tools via Python code generation. Given an
image sequence and a natural-language query, the model composes function calls
to spatial tools including 3D reconstruction, camera-pose recovery, novel-view
rendering, efc. These operations convert raw 2D inputs into an explorable 3D
scene, enabling MLLMs to reason explicitly over structured spatial representa-
tions. Notably, pySpatial requires no gradient-based fine-tuning and operates in
a fully zero-shot setting. Experimental evaluations on the challenging MINDCUBE
and OMNI3D-BENCH benchmarks demonstrate that our framework pySpatial
consistently surpasses strong MLLM baselines; for instance, it outperforms GPT-
4.1-mini by 12.94% on MINDCUBE. Furthermore, we conduct real-world in-
door navigation experiments where the robot can successfully traverse complex
environments using route plans generated by pySpatial, highlighting the prac-
tical effectiveness of our approach. Our project website will be available at
https://pySpatial.github.io.
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1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have achieved remarkable success across diverse
tasks such as image captioning (Bucciarelli et al., 2024; Wu et al., 2024), referring ground-
ing (Kazemzadeh et al., 2014; Mao et al., 2016), video understanding (Zeng et al., 2025; Fu et al.,
2025), and document parsing (Mathew et al., 2021; 2022; Luo et al., 2024). However, this progress
has not translated into robust 3D spatial reasoning: recent studies (Wu et al., 2025; Chen et al.,
2024a; Chang et al., 2025) reveal that MLLMs still struggle with challenges spanning from basic
tasks such as judging relative object positions or estimating depth in a single image (Liu et al.,
2023; Cheng et al., 2024) to more complex reasoning over egocentric motion and multi-view rela-
tions (Yin et al., 2025; Yang et al., 2025). Such limitations pose a substantial barrier to their reliable
deployment in safety-critical applications including robotics, augmented reality, and embodied
intelligence, where tasks such as navigation, manipulation, and human-robot interaction depend on
precise spatial understanding (Li et al., 2024; Duan et al., 2024; Song et al., 2025; Qiao et al., 2025).

While recent efforts (Chen et al., 2024a; Cheng et al., 2024) have primarily targeted improving spa-
tial understanding from a single image (e.g., “Is the stool in front of the oven?”), in this work we fo-
cus on the more challenging problem of 3D spatial reasoning, where the environment is only partially
observed with limited views and models must reason across perspectives to answer queries such as
“Where should I move from view I to view 2 ?”°—a setting in which state-of-the-art MLLMs perform
only slightly above random guess (Yin et al., 2025). Recent studies (Chen et al., 2024a; Ma et al.,
2025) suggest that this weakness largely stems from the training data: although MLLMs are pre-
trained on internet-scale image-caption pairs, explicit 3D supervision is sparse and costly, making
it difficult to learn reliable correspondences between language and 3D spatial structures and thereby
constraining models’ ability to reason effectively in 3D space. More recently, Yin et al. (2025)
explores the use of data structures such as 2D cognitive maps, where the model encodes object posi-
tions in a top-down view to mentally simulate spatial layouts, as shown in Figure 1. However, these
approaches still rely on implicit “imagination” mechanisms and offer only limited effectiveness.

These limitations motivate our central research question: how can we equip MLLMs with explicit
reasoning capabilities in 3D space? A natural first step toward this goal is to obtain an explicit
geometric foundation on which such reasoning can take place. Recent advances in feed-forward
3D reconstruction (Wang et al., 2024b; 2025a) makes this feasible by recovering scene geometry
directly from sparse 2D views, including camera parameters, depth maps, and scene-level point
clouds. Such representations transform limited 2D views into an explorable 3D scene, within which
models can perform spatial transformations (hereafter referred to as spatial tools) such as camera
translation, rotation, and viewpoint shifts to enrich visual context and build interactive reasoning
chains. For instance, given the query “what is behind me if [ am at view 3,” the model could rotate the
virtual camera by 180° at the specified viewpoint within the reconstructed scene, thereby uncovering
previously occluded regions and grounding its reasoning in geometric evidence.

However, how to enable MLLMs to flexibly compose spatial tools and seamlessly interact with 3D
environments in a context-aware manner remains a critical challenge. To address this, inspired by
pioneering works on visual programming (Gupta & Kembhavi, 2023; Suris et al., 2023), we intro-
duce pySpatial, a framework that employs MLLMs like GPT-40 as Python code generation agents
to invoke function calls for tools such as 3D reconstruction, natural language description of move-
ments, and novel view synthesis. As illustrated in Figure 1, pySpatial leverages a well-defined API
to automatically select and compose the appropriate tools to solve diverse spatial reasoning tasks.
Notably, pySpatial operates fully in a zero-shot setting and serves as a plug-and-play framework
applicable to both open-source and closed-source MLLMs, offering interpretable solutions and reli-
able responses that make it well-suited for diverse real-world tasks.

We evaluate the effectiveness of our approach on the MINDCUBE and OMNI3D-BENCH bench-
marks, where results demonstrate that pySpatial consistently outperforms strong MLLM baselines
by substantial margins (e.g., achieving a 12.94% improvement over GPT-4.1-mini on MINDCUBE).
Qualitative analyses further verify that our approach can generate high-quality executable and in-
terpretable visual programs that can effectively solve complex spatial reasoning tasks in a zero-shot
manner. Furthermore, we apply pySpatial to real-world indoor navigation, where it successfully
enables a quadrupedal robot to traverse complex environments using generated route plans.

Our contributions can be summarized as follows:
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* We present pySpatial, a novel zero-shot framework that enables MLLMs to reason explicitly
in 3D space by generating and executing visual programs that leverage various spatial tools in a
structured, compositional manner to solve diverse spatial reasoning tasks.

* We evaluate pySpatial on MINDCUBE and OMNI3D-BENCH, where it demonstrates superior
performance over strong MLLM baselines. Qualitative analysis validates that pySpatial reliably
generates executable and interpretable visual programs for diverse spatial reasoning tasks.

* We further assess the practical effectiveness of pySpatial on indoor navigation tasks, showing
that it can generate route plans that enable a quadrupedal robot to traverse complex environments,
demonstrating strong potentials for practical use cases.

2 RELATED WORK

MLLMs for Spatial Reasoning. Recent MLLMs have demonstrated remarkable performance on
multi-modal tasks such as image captioning and visual grounding (Liu et al., 2024a; Alayrac et al.,
2022; Bai et al., 2025; Chen et al., 2024b). However, studies have shown that these models exhibit
significant limitations in interpreting spatial relations (Yu et al., 2024; Kamath et al., 2023; Wang
et al., 2024a; Tong et al., 2024), a critical precursor to a wide range of practical applications, includ-
ing robotic manipulation (Huang et al., 2022; Shridhar et al., 2023) and embodied navigation (Qiao
et al., 2025; Huang et al., 2023). To address this, recent works such as Spatial VLM (Chen et al.,
2024a) and SpatialRGPT (Cheng et al., 2024) typically propose scalable data synthesis and curation
pipelines to strengthen single-view spatial reasoning capabilities through large-scale pre-training.
Despite these advances, more recently, Yin et al. (2025) demonstrates that current MLLMs and such
approaches still struggle with geometric understanding and perspective-taking in multi-view settings.
In this work, we are among the first to tackle this challenge, and we propose a novel zero-shot visual
programming framework called pySpatial that systematically combines and applies various spatial
tools, enabling models to explicitly reason in 3D and solve diverse spatial tasks.

3D Reconstruction. Classical 3D reconstruction methods, such as Structure-from-Motion (Schon-
berger & Frahm, 2016), typically involve multiple stages and often rely on time-consuming
optimization pipelines. More recently, feed-forward 3D reconstruction approaches such as
DUSt3R (Wang et al., 2024b), MASt3R (Leroy et al., 2024), CUT3R (Wang et al., 2025b) and
VGGT (Wang et al., 2025a) leverage large-scale 3D pre-training and vision transformers to directly
predict pixel-aligned 3D point maps. These data-driven methods demonstrate strong generalizabil-
ity, even in scenarios without overlapping views. Building on this progress, subsequent works have
extended feed-forward 3D reconstruction to applications in neural rendering (Charatan et al., 2024),
SLAM (Maggio et al., 2025), and dynamic reconstruction (Lin et al., 2025).

Modular Visual Reasoning. To enhance compositional multi-modal understanding, recent ad-
vances treats vision specialists (such as GroundingDINO (Liu et al., 2024b) and SAM (Ravi et al.,
2025)) as symbolic operators and composes them to solve complex reasoning problems. Represen-
tative works such as Visual ChatGPT (Wu et al., 2023), MM-REACT (Yang et al., 2023), and Hug-
gingGPT (Shen et al., 2023) follow this direction by integrating LLMs with predefined toolchains
to process multi-modal inputs. Building on this idea, VisProg (Gupta & Kembhavi, 2023) and
ViperGPT (Suris et al., 2023) introduce visual programming that extends this paradigm by prompt-
ing MLLMs to generate executable Python programs that call a set of visual parsers through pre-
defined APIs. More recently, VADAR (Marsili et al., 2025) introduces the visual programming
paradigm for single-view spatial reasoning tasks with an adaptive API design. In contrast, our
pySpatial introduces a framework explicitly designed for multi-view spatial reasoning, equipping
models with compositional 3D tools to handle diverse and complex spatial scenarios.

3 METHOD

In this section, we present pySpatial, a visual programming framework that enables MLLMs to
reason explicitly in 3D space by generating and executing visual programs that orchestrate multiple
spatial tools to address diverse spatial reasoning tasks. We also describe the framework design,
including the pySpatial API signatures and the spatial tools it employs.
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3.1 PROBLEM FORMULATION

We consider a setting where an MLLM M is provided with an image sequence Z = {I,,}2_,,

where each view has resolution H x W and captures partial observations of a 3D scene, along with
a natural-language query ¢ concerning spatial relations between objects or camera movements. The
objective is to produce the correct response r* from the answer space .4 that answers the query.

As introduced in Section 1, we convert the limited 2D views into an explorable 3D scene via feed-
forward reconstruction. This yields consistent depth estimates D, camera intrinsics K € R3*3, and
extrinsics G € SE(3) for each frame. Together, these quantities define a point cloud P in world
coordinates, which serves as the geometric basis for downstream reasoning.

In addition, we adopt a program synthesis-perspective following Surfs et al. (2023). Given an input
of an image sequence and a query (Z, ¢), a code agent F generates a Python program z that invokes
a set of spatial tools through a well-defined API. The program is executed by an interpreter £ to
produce an intermediate output O, which may take the form of text, a single image, or a list of images
depending on the program z. This output provides direct visual evidence to support answering the
query. For instance, when the query asks, “what is behind me if I am at view 3, the program renders
anew view by rotating the camera 180° at the specified viewpoint. Finally, the MLLM M integrates
both the original visual inputs and the program outputs to generate the final response r € A.

3.2  SPATIAL TOoOLS AND API

To guide the MLLMs to explicitly reason in 3D space, we introduce various spatial tools such as
3D reconstruction, camera description, and novel view synthesis. We provide the pySpatial API
signatures in Code 1 and the details of each tool are described in the following sections.

3D Reconstruction. We adopt two feed-

forward reconstructions depending on task re- | ¢'2ss pySpatial: . .
A A pySptial interface for 3D vision tools.
quirements. For metric-scale scenes, we use
g . : def reconstruct(scene: Scene):
CUT3R (deg et dl’ 2()25b)’ Wthh returns # 3D reconstruction from scene images.
depth in real-world units. When up-to-scale ge- )
def describe_camera_motion(recon:
ometry suffices, we adopt VGGT (Wang et al., Pl o
2025a) for its generalizability. & Bopenibo cerern meden Ssem
reconstruction results.
FOl"maHy, eaCh pixel p'L 6 RQ in a VieW In Wlth def synthesize_novel_view(recon: Reconstruction
1 ) 1 _ 1 1 , new_camera_pose):
predICted depth Dn(pz) 18 baCk Pro‘]eCte,d H,]to # Generate novel view synthesis from
the camera coordinate system using the intrin- reconstruction results.
sics K, and then transformed into world coor- Sy S R
dinates via the estimated pose G,, € SE(3): # Rotate camera pose to the Tight, rotate
90 degree by default
Xi = G":l W_l(pi7Dn(pi)7K_1) ) (1) def rotate_left(extrinsic, angle=None):
—1 . . # Rotate camera pose to the left rotate 90
where 7~ denotes the back-projection from degree by default
image COOrdinateS to the 3D pOint ln the def move_forward(extrinsic, distance=None):
camera frame. We get the point cloud P in the # Move camera pose forward, a default
world space by concatenating X; for all pixels CHONREE 89 PRovAes
in all frames_ def move_backward(extrinsic, distance=None):
# Move camera pose backward, a default
Camera Description. We translate raw camera CHEREIEO 5O PROwEe
pose matrices into natural language labels to def turn_around (extrinmsic):
. . . # Turn camera pose around 180 degrees
make egocentric motion interpretable to the
language model. Each pose is represented by Code 1: pySpatial API signatures.
an extrinsic matrix G = [R | t] € R**%, which maps world points into the camera frame. The
corresponding camera center in world coordinates is C = —RTt. Given two poses (Ry,t;)

and (Ro, t2), the displacement in world coordinates is AC,, = Co — C;. We then express this
displacement in the first camera’s frame as AC; = Rj; AC,,. Restricting the displacement to
the horizontal plane, we compute the yaw angle § = atan2(d;,d.) - 180/m, where (d,,d,) are
the = and z components of AC;. The angle is discretized into eight canonical motion categories
(forward, backward, left, right, and four diagonals), yielding a compact natural-language description
of egocentric movement.

Novel View Synthesis. To facilitate active exploration of the reconstructed 3D scene, we enable
the agent to render novel views from arbitrary camera poses. Given a point cloud P and a
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world-to-camera transformation G = [R | t] € R3*4, we rasterize P into an RGB image with
respect to G and the corresponding camera intrinsics K. The agent can then issue high-level
actions such as rotate_left and turn_around, which are implemented as yaw rotations about
the world y-axis by angle ¢. The updated camera pose G’ is obtained by applying the rotation to the
camera-to-world transform and inverting back to world-to-camera form. This operation provides
interactive visual feedback that supports explicit spatial reasoning.

3.3 3D VISUAL PROGRAMMING

Program Generation. Given a query ¢, the code agent F synthesizes a Python program z = F(q)
that composes function calls specified in the pySpatial API. By default, we use GPT-40, a strong
MLLM baseline that has demonstrated effectiveness in code generation, as it has been trained on
Internet-scale Python code data. Note that the agent interacts only with the public interface (e.g.,
reconstruct, rotate_right, synthesize_novel_view) and has no access to internal imple-
mentation details such as model weights, file I/O, or rendering backends. This abstraction separates
high-level reasoning from low-level execution. We guide program synthesis using in-context exam-
ples, where the prompts include interface documentation and query—code pairs without ground-truth
answers. In addition, we leverage structured outputs to first enable free-form natural language rea-
soning, followed by the synthesis of Python code. The generated Python code, or visual program,
acts as an explicit intermediate representation that encodes a sequence of tool invocations. It is inher-
ently interpretable, as researchers can readily inspect, debug, or modify the generated program, and
composable, enabling seamless integration with additional tools or downstream reasoning modules.
Once constructed, the program is executed by the interpreter to produce concrete spatial operations.

Program Execution. At execution time, the synthesized program z is executed by a Python inter-
preter £ over the input image sequence Z, yielding an intermediate output O = £(z,7). Depending
on the query, the output O may take the form of text, a single image, or a sequence of rendered
views. This intermediate output provides an explicit grounding of the program’s reasoning steps in
observable evidence. In the final stage, a MLLM M integrates the original image sequence Z, the
program output O, and the natural language query ¢ to generate the final response » = M(Z, O, q).

4 EXPERIMENTS

In this section, we assess the effectiveness of pySpatial on MINDCUBE (Yin et al., 2025) and
OMNI3D-BENCH (Marsili et al., 2025), comparing it with existing state-of-the-art approaches.

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We mainly evaluate our framework on the MINDCUBE (Yin et al., 2025), which is
designed to probe the spatial reasoning capabilities of MLLMs under limited views. Specifically,
MINDCUBE contains over 21,000 spatial question—answer pairs grounded in 3,268 multi-view in-
door scenes, spanning three canonical camera motion types: rotation, around, and among. We also
evaluate on MINDCUBE-1k, a subset of MINDCUBE with 1,050 questions, specifically designed for
evaluation purposes. In addition, following prior work (Marsili et al., 2025), we also evaluate our
framework on OMNI3D-BENCH, a single-view spatial reasoning benchmark, to examine whether
our visual programming approach can generalize beyond multi-view settings.

Baselines. We compare the performance of pySpatial against four categories of existing baselines:
(1) open-weight multi-image MLLMs, such as LLaVA-OneVision-7B (Li et al., 2025) and Qwen2.5-
VL-3B-Instruct (Bai et al., 2025); (2) proprietary MLLMs, including GPT-40, GPT-4.1-mini, and
Claude-4-Sonnet; (3) specialized spatial models, such as Space-Qwen (Chen et al., 2024a) and
VLM-3R (Fan et al., 2025), and (4) prior visual programming approaches such as ViperGPT (Suris
et al., 2023), VisProg (Gupta & Kembhavi, 2023), and VADAR (Marsili et al., 2025).

Implementation Details. By default, we follow prior visual programming work (Marsili et al.,
2025) to leverage GPT-40 as the code agent to generate Python programs and produce final responses
to queries. We use VGGT (Wang et al., 2025a) as 3D reconstruction model on the MINDCUBE and
OMNI3D-BENCH benchmarks. For real-world navigation, we use CUT3R (Wang et al., 2025b),
which provides metric-scale reconstructions rather than normalized outputs. For point cloud rasteri-
zation, we use Open3D (Zhou et al., 2018) to render novel views. All experiments are conducted on
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Table 1: Performance comparison on the full MINDCUBE (Yin et al., 2025) dataset. The best
results are shown in bold, and the second-best are underlined. Note that we implement pySpatial
using GPT-4.1-mini as the code agent for this dataset due to budget constraints.

Method Reference Overall Rotation Among Around
Baseline

Random (chance) - 32.35 36.36 32.29 30.66
Random (frequency) - 33.02 38.30 32.66 35.79
Open-Weight Multi-Image Models

LLaVA-OneVision-7B Li et al. (2025) 47.43 36.45 48.42 44.09
LLaVA-Video-Qwen-7B Zhang et al. (2025) 41.96 35.71 43.55 30.12
mPLUG-Owl3-7B-241101 Ye et al. (2025) 44.85 37.84 47.11 26.91
InternVL2.5-8B Chen et al. (2024b) 18.68 36.45 18.20 13.11
Qwen2.5-VL-7B-Instruct Bai et al. (2025) 29.26 38.76 29.50 21.35
Qwen?2.5-VL-3B-Instruct Bai et al. (2025) 33.21 37.37 33.26 30.34
DeepSeek-VL2-Small Lu et al. (2024) 47.62 37.00 50.38 26.91
Proprietary Models

GPT-4o0 OpenAl (2024) 38.81 32.65 40.17 29.16
GPT-4.1-mini OpenAl (2025) 45.62 37.84 47.22 34.56
Claude-4-Sonnet Anthropic (2025) 44.75 48.42 44.21 47.62
Specialized Spatial Models

RoboBrain Jietal. (2025) 37.38 35.80 38.28 29.53
SpaceMantis Chen et al. (2024a) 22.81 37.65 21.26 29.32
Spatial-MLLM Wu et al. (2025) 32.06 38.39 20.92 32.82
Space-Qwen Chen et al. (2024a) 33.28 38.02 33.71 26.32
VLM-3R Fan et al. (2025) 42.09 36.73 44.22 24.45
pySpatial (Ours) - 58.56 43.20 60.54 48.10

Table 2: Performance comparison on the MINDCUBE-1k (Yin et al., 2025) dataset. The eval-
uated mental models (Yin et al., 2025) are based on Qwen2.5-VL-3B-Instruct (Bai et al., 2025).
VADAR w/ Recon. denotes that we implement VADAR with our 3D reconstruction module. The
best results are highlighted in bold, and the second-best are underlined.

Method Reference Overall Rotation Among Around
Baseline Models

Qwen2.5-VL-3B-Instruct Bai et al. (2025) 37.81 34.00 36.00 45.20
GPT-40 OpenAl (2024) 42.29 35.00 43.00 46.40
Spatial Mental Models

Chain-of-Thought 40.48 32.00 36.00 58.00
View Interpolation Yin et al. (2025) 37.81 35.50 36.50 42.80
Cognitive Map 41.43 37.00 41.67 44.40
Visual Programming Approaches

ViperGPT Suris et al. (2023) 36.95 20.50 41.00 40.40
VADAR Marsili et al. (2025) 40.76 33.50 40.67 46.80
VADAR w/ Recon. - 35.62 31.00 36.83 36.40
pySpatial (Ours) - 62.67 41.00 65.00 66.33

a single NVIDIA A6000 Ada GPU. We provide full implementation details of pySpatial, along
with the prompts used, in Appendix A and B. Code will be made publicly available upon acceptance.

4.2 QUANTITATIVE RESULTS

Results on MINDCUBE. We first perform comprehensive evaluations of pySpatial on the chal-
lenging MINDCUBE benchmark to rigorously assess its effectiveness in multi-view spatial reason-
ing. Table 1 summarizes the results in comparison with baseline approaches. Overall, pySpatial
achieves a clear performance margin over all categories of baselines. Specifically, it reaches an
overall accuracy of 58.56%, outperforming the best open-weight model DeepSeek-VL2-Small by
10.94%, and surpassing the strongest proprietary model GPT-4.1-mini by 12.94%. On the Among
category, which requires reasoning over how the central object relates to all surrounding objects,
pySpatial achieves 60.54%, substantially outperforming all baselines, none of which exceed
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Table 3: Performance comparison on OMNI3D-BENCH. Following VADAR (Marsili et al.,
2025), We report mean relative accuracy (Yang et al., 2025) for the numeric (other) and accuracy
for the other category. The best results are shown in bold, and the second-best are underlined.

Method Reference numeric (ct) numeric (other) y/n  multi-choice  Total
Baseline Models

GPT-40 OpenAl (2024) 28.1 355 66.7 572 429
Claude3.5-Sonnet Anthropic (2024) 224 20.6 62.2 50.6 322
Llama-3.2 Meta (2024) 24.3 19.3 47.5 27.4 25.6
Geminil.5-Pro Google (2024) 252 28.1 46.2 37.6 32.0
SpaceMantis Chen et al. (2024a) 20.0 21.7 50.6 48.2 30.3
Visual Programming Approaches

ViperGPT Suris et al. (2023) 20.0 15.4 56.0 424 26.7
VisProg Gupta & Kembhavi (2023) 2.9 0.9 54.7 259 13.5
VADAR Marsili et al. (2025) 21.7 355 56.0 57.6 40.4
pySpatial (Ours) - 229 38.6 72.0 54.7 44.2

50%. Remarkably, pySpatial also outperforms VLM-3R (Fan et al., 2025), which leverages
CUT3R (Wang et al., 2025b) as the 3D encoder and is fine-tuned on synthetic spatial reasoning
data, by 16.5%, despite operating entirely in a zero-shot setting. These results demonstrate that
pySpatial generalizes well across diverse task categories on MINDCUBE. By explicitly decom-
posing spatial reasoning into modular tool calls, our approach provides a stronger inductive bias
than both open-weight and proprietary MLLMs, including those specialized for spatial reasoning.

Results on MINDCUBE-1k. Table 2 compares pySpatial against approaches based on implicit
mental modeling (Yin et al., 2025) (e.g., chain-of-thought reasoning, cognitive maps) and prior
visual programming agents (e.g., ViperGPT, VADAR) on MINDCUBE-1k. We have the following
key observations: (1) Spatial mental models (Yin et al., 2025), which rely on the implicit imagina-
tion mechanisms of MLLMs for spatial reasoning, yield only limited performance gains, whereas
pySpatial outperforms each of them by roughly 20%; (2) Our pySpatial substantially outper-
forms existing visual programming approaches, achieving, for example, a 21.9% improvement over
VADAR. Notably, pySpatial also surpasses VADAR w/ Recon., where we re-implement VADAR
using our 3D reconstruction module. This result demonstrates that even when equipped with 3D
information, VADAR’s adaptive API design remains unreliable and lacks robustness for reasoning
in 3D space. These results validate the superior effectiveness of pySpatial over existing baselines,
demonstrating the advantages of enabling explicit 3D reasoning for multi-view spatial reasoning.

Results on OMNI3D-BENCH. We further evaluate pySpatial on the recent single-view spatial
reasoning benchmark OMNI3D-BENCH, demonstrating that our framework generalizes effectively
to single-view settings and provides consistent improvements across task categories. Table 3 shows
results on OMNI3D-BENCH, where we follow the evaluation protocol of VADAR (Marsili et al.,
2025): mean relative accuracy (MRA) is reported for the numeric (other) subtask, and standard ac-
curacy is used for the remaining categories. Our pySpatial outperforms prior visual programming
approaches, achieving gains of 3.8% over VADAR and 17.5% over ViperGPT, and sets a new over-
all state-of-the-art on OMNI3D-BENCH. Notably, pySpatial also surpasses GPT-40 on the total
score, underscoring that our visual programming framework provides benefits even over advanced
proprietary MLLMs. This result highlights the broad generalizability of pySpatial: even in single-
view settings where geometric cues are less apparent, explicitly invoking 3D functions through the
code agent continues to enhance spatial reasoning.

4.3 QUALITATIVE RESULTS

To further illustrate the capabilities of our pySpatial framework, we conduct qualitative experi-
ments on representative examples from the MINDCUBE benchmark. As shown in Figure 2, each
query is paired with the generated 3D visual program, the reconstructed 3D scene, the program out-
puts, and the final response produced by pySpatial. These examples highlight how pySpatial
enables MLLMs to reason explicitly within an explorable 3D scene reconstructed from sparse 2D
inputs. By synthesizing executable and interpretable visual programs that perform operations such
as camera translation, rotation, and novel view synthesis, the framework provides interpretable out-
puts that ground the reasoning process in geometric evidence. Across diverse spatial reasoning
tasks, pySpatial produces responses that closely align with ground-truth annotations, highlight-
ing the effectiveness of our approach. It is worth noting that the generated 3D visual programs
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Query: In which direction did | move from the first view to the second view? Ground Truth: Diagonally forward and left.

3D Reconstruction: Program Output:
def program! input_scene: Scene):

# Step 1: reconstruct the 3D scene from the input images
reconstruction3D = pySpatial.reconstruct/ input_scene
# Step 2: describe the camera motion between the two views using extrinsics
camera_motion_description = pySpatial.describe_camera_motion reconstruction3d
# Return the description which should match one of the answer choices
return camera_motion_description

From image | to
image 2, the camera
move diagonally
forward and left.

. Final Response: The visual clue explicitly states the camera moved from pose 0 to pose |diagonally forward and left. Therefore, the
" direction of the camera movement is diagonally forward and left.

Query: From the viewpoint 2, what is on to the right of the black chair? Ground Truth: Grey Sofa

def program input_scene: Scene: .

# Step 1: reconstruct the 3D scene from the input images 3D Reconstruction: Program Output:
reconstruction3D = pySpatial.reconstruct  input_scene
# Step 2: get the camera extrinsic for the second viewpoint (index 1)
vlewpolnt 2= reconstructwnzb trinsics
e right from viewpoint 2 to see what is on the

pySpatial. rotate _right (viewpoint_2

synthesize the novel view from the rotated camera pose

novel_view = pySpatJal synthesize_r novel view! reconstruction3D, novel_viewpoint
3 ovel synthesized view for visual inspection

the question

return novel_view

Final Response: From the rendered point cloud image, we can see a large grey sofa. Its shape, cushion structure, and placement
along the wall make it clearly identifiable as a sofa rather than a table, cabinet, or office setup.

Query: From viewpoint 4, if | turn left and move forward, will | get closer to the two single sofas? Ground Truth:Yes.

def program input_scene: Scene
# Reconstruct the 3D scene from input images
reconstructed_scene = pySpatial.reconstruct input_scene
# Get the camera extrinsics of image 4 (index 3)
base V)ewpmnt = reconstructed_scene. extr)ns)cs 3
i poin
.rotate_left (base_viewpoint
Left viewpoint
v)ewpo)nt ove_forward = pySpatial.move_forward viewpoint_turn_left

3D Reconstructloq

the turned Left and moved forward viewpoints
image turn, left = pySpatial. synthesize novel_view reconstructed_scene, viewpoint_turn_left Program Output
image_move_forward = pySpatial.synthesize_novel view reconstructed_scene, viewpoint_move_forward TS T s 'jma e move forward
v # Return the two images for visual comparison to check if closer to the sofas ge_turn_ ge_move_tor
. return |image_turn_left, image_move_forward o “‘ - ‘w A
BN A ).
Final Response: The second view shows the two single sofas prominently and larger, suggesting a closer distance. ( ~\ ,-,%
Query: From viewpoint 3, what is to the right of the blue bag? Ground Truth: Black sofa.
def program(input_scene: Scene): 3D Reconstruction:

# Reconstruct the 3D scene from the four images

reconstructed_scene = pySpatial.reconstruct input_scene

# Get the camera extrinsic for image 3 (index 2)

viewpoint_3 = reconstructed_scene.extrinsics|2

# Rotate the camera right from viewpoint 3 to see what is ;
# to the right of the blue bag %
viewpoint_right_of 3 = pySpatial.rotate_right viewpoint_3

# Synthesize the novel view from the rotated camera pose

novel_view = pySpatial.synthesize_novel_view reconstructed_scene, viewpoint_right_of 3

# Return the novel view image for visual inspection to identify

# what is to the right of the blue bag

return novel_view

Program Output:

Final Response: The novel view synthesized by rotating the camera to the right of the viewpoint 3 shows a black sofa point cloud. The shape, color, and
texture in that part align well with the appearance of a black sofa rather than a window, plush toy, or display shelves.

Figure 2: Qualitative results on four examples from MINDCUBE. We show that pySpatial
enables MLLMs to explicitly reason within the reconstructed explorable 3D scene, effectively
addressing diverse spatial reasoning tasks through interpretable and executable 3D visual programs.

include well-structured comments that capture the reasoning process of pySpatial, thereby pro-
viding transparency and interpretability that researchers can readily verify, debug, or modify.

4.4 REAL-WORLD ROBOT NAVIGATION

To test the potential of real-world deployment using purely MLLMs, we employ a quadrupedal robot
with a velocity-tracking controller in a 50 m? two-room laboratory. In this setup, the MLLM gener-
ates high-level position commands, which are manually converted into temporal velocity targets that
the controller tracks, enabling the robot to navigate from an initial pose to a target object (a mush-
room toy). From limited 2D views, pySpatial reconstructs an explorable 3D scene, infers camera
poses via visual programming, and generates a structured motion plan for the robot to execute.

As shown in Figure 3, our pySpatial successfully guides the robot through doorways, make correct
turns, and finally toward the correct goal location. Notably, the MLLM baseline GPT-4.1 struggles
to resolve relative direction such as left-right and fails to provide absolute metric distance estimates,
leading to navigation errors. In contrast, our agent outputs precise rotations and translations that
align with real-world execution, resulting in reliable task completion. This experiment demonstrates
that our approach not only produces coherent spatial reasoning in question answering benchmarks,
but also transfers effectively to physical robotic platforms for complex indoor navigation tasks.

4.5 DISCUSSIONS
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Query: Given a quadrupedal robot initialized at the pose corresponding to image |, generate a task specification and motion

plan for navigating to the mushroom toy at Image 4.

Input Limited Views

Reconstructed 3D Scene & Motion Plan

Proposed Motion Plan from GPT-4.1 @

I. Move forward 2.2m to exit the office through the doorway into the
larger room.Then turn left 35° to directly face the white table.

2. Move forward |.3m toward the near edge of the table (center
position), and then turn left 40° to align with the long left wall.

3. Move diagonally forward-left 2.6m along the table’s side, stopping

Proposed Motion Plan from pySpatial (Ours) @

. Go through the office door into the next room (straight ahead,

3.09m).

. Turn right 78.8°, move alongside the white table toward the back

right corner and large brown box (4.23m).

3. From there, turn left 89.9°, move past the black chair with

near the far corner by the whiteboards and then turn right 30° to

(e i TE e &y D o iR mushroom toy, straight to the door at the far wall (2.23m).

Figure 3: Qualitative results on real-world robot navigation. We deploy pySpatial on a Unitree-
Gol robot to navigate toward a target object (mushroom toy) using limited views as input. The figure
shows the reconstructed 3D scene, motion plans, and physical execution. Compared to the GPT-
4.1 baseline, which fails due to an incorrect initial turn and produces a collision-prone trajectory,
pySpatial generates a geometrically consistent plan that successfully reaches the goal.

Table 4: Ablation study on the code agent. We
Ablation Study on the Code Agent. To ab- report the accuracy on the MINDCUBE- 1k dataset.
late the effect of our code agent, we con- Method
duct experiments on the MINDCUBE- 1k bench- GPTdo 1229 35.00 300 26.40
mark by comparing the performance of vari- oo i 67 4100 6500 6633
ous MLLM baselines with and WlthO}lt integra- P4 L 4334 2600 1500 2450
tion of pySpatial. As.summanze(.l in Table.4, S pySI;atial 5819 7S 6200 6560
augmenting models with pySpatial consis-
tently leads to substantial improvements across =~ GPT41 44.67 35.50 4533 5040
all tested MLLM, including GPT-4o, GPT-4,]- _*PySpatial 6342 4200 6633 7360
mini, and GPT-4.1. For instance, GPT-40 im-
proves from 42.3% to 62.7% overall accuracy, indicating that pySpatial generalizes across differ-
ent MLLMs and effectively enhance spatial reasoning.

Overall Rotation Among Around

Failure Case Analysis. From the MINDCUBE benchmark, we se-
lect a representative subset of about 100 samples and conduct a
manual analysis to identify the underlying sources of error in cases
where the final response is incorrect. As shown in Figure 4, among
the 39% of failure cases, only 6% are attributable to incorrectly gen-
erated visual programs that fail to address the query, validating the
effectiveness of our overall programming pipeline. Beyond this,
20% of errors arise from the MLLMs at the final reasoning step,
while 13% stem from limitations in the 3D reconstruction models,
where the generated visual programs are correct but the program Figure 4: Failure case study.
outputs do not provide useful information. These results also sug- We manually examine the er-
gest that advances in 3D reconstruction and code generation models ~ ror sources in about 100 sam-
hold the potential to further enhance our performance. ples from MINDCUBE.

Correct
Program Error
M Response Error

M Recon. Error

Remarks on Efficiency. Our pySpatial completes the MINDCUBE-1k benchmark in 2.17 hours
on a single GPU using a single thread for 1,050 queries, averaging 7.45 seconds per query. As the
breakdown, code generation requires 2.41 seconds, program execution 2.14 seconds, and answer
generation 2.90 seconds. For comparison, VADAR (Marsili et al., 2025) requires 17.25 seconds per
query on average. These results demonstrate that our visual programming framework enhances the
spatial reasoning capabilities of MLLMs while remaining efficient to deploy without excessive cost.



Preprint, Under Review

5 CONCLUSION

In this work, we present pySpatial, a visual programming framework that enhance spatial rea-
soning capabilities of MLLMs through zero-shot Python code generation. By composing functions
such as 3D reconstruction and novel-view synthesis, pySpatial converts 2D image sequences into
explorable 3D scenes, enabling explicit reasoning in 3D space. Experiments on the MINDCUBE
and OMNI3D-BENCH benchmarks demonstrate that pySpatial consistently outperforms strong
MLLM baselines, with gains of up to 12.94% on MINDCUBE compared to GPT-4.1-mini. Beyond
benchmarks, real-world indoor navigation experiments further validate its practicality, showing that
robots can successfully traverse complex environments using route plans generated by pySpatial.

10
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All the spatial tools used in this
work are open-sourced, and the benchmark datasets we evaluate on are publicly available. We have
provided detailed descriptions of our experimental setup and implementation details in Section 4 and
Appendix to facilitate reproducibility. Code will be publicly available upon acceptance to enable the
community to reproduce our experiments and build upon our work.
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Generating 3D Visual Programs for Zero-Shot Spatial Reasoning

Appendix

In the appendix, we provide additional implementation details of our pySpatial framework. The

appendix is organized as follows:

 Section A shows the API specification for pySpatial.
* Section B presents the prompt implementation for our agent.

* Section C disclosures the use of large language models.

A IMPLEMENTATION FOR PYSPATIAL

A complete description of the API interface is provided in Code 2.

import os

import glob

from typing import List, Union
from pathlib import Path

from tool.recontruct import reconstruct_3d

from tool.segment import segment_image, segment_automatic

from tool.estimate_depth import estimate_depth

from tool.camera_understanding import analyze_camera_trajectory

from tool.novel_view_synthesis import novel_view_synthesis, rotate_right, rotate_left,

move_forward, move_backward, turn_around
import re

class Reconstruction:

def __init__(self, point_cloud, extrinsics, intrinsics, colors=None):
self.point_cloud = point_cloud
self.extrinsics = extrinsics # list of 4 *4 numpy array
self.intrinsics = intrinsics
self.colors = colors # Add colors attribute

class Scene:
"""Simple scene class that holds image data."""

def __init__(self, path_to_images: Union[str, List[str]], question: str = "",

scene_id: str = None):
self.question = question
self.scene_id = scene_id

self .original_path = path_to_images # Store original path for reconstruction

self.images = self._load_images (path_to_images)
self .reconstruction : Reconstruction = None
self .code : str = None

self.visual_clue = None

def _load_images(self, path_to_images: Union[str, List[str]]) -> List[str]:
"""Load image paths from directory or list."""
if isinstance(path_to_images, str):
if os.path.isdir(path_to_images):
# Check if this is a demo directory (contains .glb files)
demo_path = Path(path_to_images)
glb_files = list(demo_path.glob("*.glb"))

if glb_files:

# This is a demo directory, load images from color/ subdirectory

color_dir = demo_path / "color"

if color_dir.exists():
image_extensions = ['#.png', '*.jpg', '*.jpeg']
images = []

for ext in image_extensions:
images.extend (glob.glob(os.path. join(str(color_dir),
return sorted(images)
else:
print (f"Warning: Demo directory detected but no color/
subdirectory found in {path_to_imagesl}")
return []

else:
# Regular directory, load all images from directory
image_extensions = ['*.png', '*.jpg', '*.jpeg'l]
images = []
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for ext in image_extensions:
images.extend (glob.glob(os.path. join(path_to_images, ext)))
return sorted(images)
else:
# Single image file
return [path_to_images]
else:
# List of image paths
return list(path_to_images)

class pySpatial:
"""Simple interface for 3D vision tools."""
# we disable other function for now

@staticmethod

def reconstruct(scene: Scene):
"""3D reconstruction from scene images."""

# Check if this is a demo directory (contains .glb files)

if isinstance(scene.original_path, str) and os.path.isdir(scene.original_path):
demo_path = Path(scene.original_path)
glb_files = list(demo_path.glob("*.glb"))

if glb_files:
# This is a demo directory, pass the directory path for demo data loading

result = reconstruct_Sd(scene.original_path, scene_id=scene.scene_id)
else:
# Regular reconstruction with image paths
result = reconstruct_Sd(scene.images, scene_id=scene.scene_id)
else:
# Regular reconstruction with image paths
result = reconstruct_3d(scene.images, scene_id=scene.scene_id)

# Convert the raw result dictionary to a Reconstruction object

point_cloud = result.get('points', None)
cameras = result.get('cameras', None)
colors = result.get('colors', None) # Get colors from result

# Convert point cloud to numpy if it's a temsor
if point_cloud is not None:

if hasattr (point_cloud, 'cpu'): # PyTorch tensor
point_cloud = point_cloud.cpu().numpy ()
elif hasattr(point_cloud, 'numpy'): # Other tensor types

point_cloud = point_cloud.numpy ()

# Convert colors to numpy if it's a tensor
if colors is not None:
if hasattr(colors, 'cpu'): # PyTorch tensor
colors = colors.cpu().numpy()
elif hasattr(colors, 'numpy'): # Other tensor types
colors = colors.numpy ()

# Extract extrinsics and intrinsics from cameras if available
extrinsics = None
intrinsics = None

if cameras is not None:
# Assume cameras contains extrinsic matrices
extrinsics = cameras.cpu().numpy() if hasattr(cameras, 'cpu') else cameras

# Create and return Reconstruction object with colors
reconstruction = Reconstruction(point_cloud, extrinsics, intrinsics, colors)

# Store the raw result for debugging
reconstruction._raw_result = result

return reconstruction

@staticmethod

def describe_camera_motion(recon: Reconstruction):
"""Describe camera motion from reconstruction results.
Args:
wan
extrinsics = recon.extrinsics
return analyze_camera_trajectory(extrinsics)

@staticmethod
def synthesize_novel_view(recon: Reconstruction, new_camera_pose, width=512, height
=512, out_path=None):

"""Generate novel view synthesis from reconstruction results.
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Args:
recon: Reconstruction object with point_cloud, extrinsics, intrinsics
new_camera_pose: 3x4 or 4x4 extrinsic matrix for the new viewpoint
width: output image width (default: 512)
height: output image height (default: 512)
out_path: output image path (default: None, returns image object if not
provided)
Returns:
str or image: path to the rendered image if out_path provided, otherwise
image object
wn

return novel_view_synthesis(recon, new_camera_pose, width, height, out_path)

@staticmethod
def rotate_right (extrinsic, angle=Nomne):
"""Rotate camera pose to the right"""
return rotate_right (extrinsic, angle)

@staticmethod
def rotate_left(extrinsic, angle=None):
"""Rotate camera pose to the left"""
return rotate_left (extrinsic, angle)

@staticmethod
def move_forward(extrinsic, distance=None):
"""Move camera pose forward"""
return move_forward(extrinsic, distance)

@staticmethod
def move_backward(extrinsic, distance=None):
"""Move camera pose backward"""
return move_backward (extrinsic, distance)

@staticmethod

def turn_around(extrinsic):
"""Turn camera pose around 180 degrees"""
return turn_around(extrinsic)

class Agent:
def init__(self, api_key: str = None):

self .api_key = api_key or os.getenv('OPENAI_API_KEY')

def generate_code(self, scene: Scene):
from agent.codeAgent.query import generate_code_from_query
return generate_code_from_query(scene, self.api_key)

def parse_LLM_response(self, scene: Scene, response: str):

Extracts the first python code block ( python ) from text.

Returns the code as a string, or "" if not found.

wn

from agent.codeAgent.execute import parse_LLM_response
code = parse_LLM_response(response)

scene.code = code

return code

def execute(self, scene: Scene):

Execute a code string with a scene and return the visual clue result.
wn

# try:

# from agent.codeAgent.execute import execute_code

# program = execute_code (scene.code)

# visual_clue = program(scene)

# return visual_clue

# except Exception as e:

# import traceback

# error_details = f"Execution failed: {str(e)}\nTraceback: {traceback.
format_exc () }"

# # Store the error for detailed reporting

# self.last_execution_error = error_details

# return f"there is an error during code generation, no visual clue provided.

Error: {str(e)}"

from agent.codeAgent.execute import execute_code
program = execute_code (scene.code)

visual_clue = program(scene)
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return visual_clue

def answer (self, scene: Scene, visual_clue):
# answer the question with visual clue
from agent.anwer import answer

# Set the visual clue in the scene
scene.visual_clue = visual_clue

# Call the answer function with API key
return answer (scene, self.api_key)

Code 2: Full pySpatial API specification.

B IMPLEMENTATION DETAILS OF THE AGENT PROMPT IN PYSPATIAL

We present the prompts used in our experiments in the box below.

AGENT PROMPT IN PYSPATIAL

task_description = """
You are now asked to solve a spatial reasoning related problem.
The input are image(s) and a natural langugae question that
specifically designed to test your spatial reasoning ability.
It is not trivial to solve these tasks directly as a vision

langugae model. However, You have access to the following Python API

api_specification = """
In the PySpatial API, we explicitly introduce the 3D inductive bias.
We provide a Scene class that contains the image(s) and a question.
Further, we also provide a 3D reconstruction process that can be
used to generate a 3D point cloud and camera parameters.

class Reconstruction:
def __init__(self, point_cloud, extrinsics, intrinsics):
self.point_cloud = point_cloud
self.extrinsics = extrinsics
self.intrinsics = intrinsics

class Scene:
"Simple scene class that holds image data."
def __init__(self, path_to_images: Union[str, List[str]l],
question: str = ""):
self.question = question
self.images = self._load_images(path_to_images)
self.reconstruction : Reconstruction = None

def _load_images(self, path_to_images: Union[str, List[str]])
-> List[str]:
"Load image paths from directory or list."
if isinstance(path_to_images, str):
if os.path.isdir(path_to_images):
# Load all images from directory
image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:
images.extend(glob.glob(os.path.join(
path_to_images, ext)))
return sorted(images)
else:
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# Single image file
return [path_to_images]
else:
# List of image paths
return list(path_to_images)

class pySpatial:
"Simple interface for 3D vision tools."
# we disable other function for now

@staticmethod
def reconstruct(scene: Scene):
"3D reconstruction from scene images."

return reconstruct_3d(scene.images)

@staticmethod

def describe_camera_motion(recon: Reconstruction):
"Describe camera motion from reconstruction results.
Args:
n

extrinsics = recon.extrinsics
return describe_camera_motion(extrinsics)

@staticmethod
def synthesize_novel_view(recon: Reconstruction,
new_camera_pose) :
"Generate novel view synthesis from reconstruction results.
Args:
n

return novel_view_synthesis(recon)

# methods to manipulate camera pose
def rotate_right(extrinsic, angle=np.pi/2):

def rotate_left(extrinsic, angle=np.pi/2):
def move_forward(extrinsic, distance=0.1):
def move_backward(extrinsic, distance=0.1):

def turn_around(extrinsic):

@staticmethod
def estimate_depth(image) :
return estimate_depth(image)

# in-context learning exmaples

example_problems = """
Problem 1:
Question: "Based on these two views showing the same scene:
in which direction did I move from the first view to the
second view?
A. Diagonally forward and left
B. Directly right
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C. Directly left
D. Diagonally forward and right"

How to solve this problem?

Step 1: we can easily find the ansewr with camera extrinsics.
Step 2: therefore, we should first reconstruct the scene,
and then use the camera extrinsics to find the answer.
Step 3: it is still not trivial to directly get the answer
from extrinsic matrix.

Step 4: we can use the pySpatial.describe_camera_motion

to get the answer.

Next, write python code within the pySpatial API provided,
then an agent will automatically collect the code

I wrote and execute it.

*“python

def program(input_scene: Scene):
reconstruction3D = pySpatial.reconstruct(input_scene)
camera_motion = pySpatial.describe_camera_motion(

reconstruction3D)

return camera_motion

Step 5: After I get the visual clue from execution,

I can easily match the answer:

Problem 2:

Based on these four images (image 1, 2, 3, and 4)

showing the pink bottle from different viewpoints (front, left, back
and right),with each camera aligned with room walls and partially
capturing the surroundings: If I am standing at the same spot and
facing the same direction as shown in image 1, then I turn right

and move forward, will I get closer to the pink plush toy

and headboard?

since we do not have the way to compare distance in 3D space,
we can render two images, and use these two images as visual clue.
T “python

def program(input_scene: Scene):

reconstructed_scene = pySpatial.reconstruct(input_scene)
base_viewpoint = reconstructed_scene.extrinsics[0]
# the image 1 indicates the Oth index in the array

viewpoint_turn_right = pySpatial.rotate_right
(base_viewpoint)

viewpoint_move_forward = pySpatial.move_forward
(viewpoint_turn_right)

image_right = pySpatial.synthesize_novel_view
(reconstructed_scene, viewpoint_turn_right)

image_forward = pySpatial.synthesize_novel_view
(reconstructed_scene, viewpoint_move_forward)

# we should compare these two images, check if the object
exists and if the distance is closer.
visual_clue = [image_right, image_forward]
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return visual_clue

code_generation_prompt = f"""
Now please utilize the PySpatial API and write a python function
to solve the problem.
Noted that you can first do reasoning and then write the code.
But the code should be wrapped in the "~ “python ~°° block.
Write a compact code block
Also, the function written should be named as program
and the input parameter should be a Scene object.
for example,
T “python
def program(input_scene: Scene):
return ...

try to add simple comments to the code to explain your logic.

Make sure to first reasoning, why we write program like this,
becuase we have a pySpatial API that allows us to explore the 3D
space, please first do a reasoning like (I want to know what is
to the right of something, therefore I just render a novel view
from that).

# Prompt template for ReAct: ReAct: Synergizing Reasoning and Acting
in Language Models https://arxiv.org/abs/2210.03629

answer_background = f"""
We are now solving a spatial reasoing problem.
It is not trivial to solve these tasks directly as a vision language
model.
However, We have access to the following PySpatial API:
{api_specification}

We generate a python code based on the PySpatial API to solve
this problem.

answer_prompt = """
Based on the code and the visual clue from the execution, answer
the question.

# Prompt for the answer without visual clue
without_visual_clue_background = """
Solve this spatial reasoning problem based on the question
and the image input.

First, analyze the question, extract useful information from
the question description, then try to answer it based on the
useful visual information.

Give your best guess if you cannot find the best answer.
nnn
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)
We employed LLMs solely as an auxiliary tool to polish the writing of this manuscript. They were

used to improve grammar, clarity, and readability, but no LLMs were involved in ideation, data
analysis, experiment design, or result interpretation.
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